
8/13/23, 7:45 PM Appendix (A) Sematic Versioning (SEMVER) - SDEVEN Software Development & Engineering Methodology

Page 1 of 6

Version: 7.0.12
Release date: 230805

Appendix A Semantic Versioning (SEMVER)

Original version

Table of Content

Appendix A Semantic Versioning (SEMVER)

Summary

Introduction

Semantic Versioning Speci�cation (SemVer)

Precedence

Why Use Semantic Versioning?

FAQ

About

License

Summary

Given a version number MAJOR.MINOR.PATCH, increment the:

MAJOR version when you make incompatible API changes,

MINOR version when you add functionality in a backwards compatible manner, and

PATCH version when you make backwards compatible bug �xes.

Additional labels for pre-release and build metadata (quali�ers) are available as extensions to the
MAJOR.MINOR.PATCH format.

Introduction

In the world of software management there exists a dreaded place called “dependency hell.” The bigger your system
grows and the more packages you integrate into your software, the more likely you are to �nd yourself, one day, in
this pit of despair.

SDEVEN Software Development & Engineering Methodology

https://semver.org/

8/13/23, 7:45 PM Appendix (A) Sematic Versioning (SEMVER) - SDEVEN Software Development & Engineering Methodology

Page 2 of 6

In systems with many dependencies, releasing new package versions can quickly become a nightmare. If the
dependency speci�cations are too tight, you are in danger of version lock (the inability to upgrade a package
without having to release new versions of every dependent package). If dependencies are speci�ed too loosely, you
will inevitably be bitten by version promiscuity (assuming compatibility with more future versions than is
reasonable). Dependency hell is where you are when version lock and/or version promiscuity prevent you from
easily and safely moving your project forward.

As a solution to this problem, I propose a simple set of rules and requirements that dictate how version numbers are
assigned and incremented. These rules are based on but not necessarily limited to pre-existing widespread common
practices in use in both closed and open-source software. For this system to work, you �rst need to declare a public
API. This may consist of documentation or be enforced by the code itself. Regardless, it is important that this API be
clear and precise. Once you identify your public API, you communicate changes to it with speci�c increments to your
version number. Consider a version format of X.Y.Z (Major.Minor.Patch). Bug �xes not affecting the API increment
the patch version, backwards compatible API additions/changes increment the minor version, and backwards
incompatible API changes increment the major version.

I call this system “Semantic Versioning.” Under this scheme, version numbers and the way they change convey
meaning about the underlying code and what has been modi�ed from one version to the next.

Semantic Versioning Speci�cation (SemVer)

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in RFC 2119.

Software using Semantic Versioning MUST declare a public API. This API could be declared in the code itself or exist
strictly in documentation. However it is done, it SHOULD be precise and comprehensive.

A normal version number MUST take the form X.Y.Z where X, Y, and Z are non-negative integers, and MUST NOT
contain leading zeroes. X is the major version, Y is the minor version, and Z is the patch version. Each element MUST
increase numerically. For instance: 1.9.0 -> 1.10.0 -> 1.11.0.

Once a versioned package has been released, the contents of that version MUST NOT be modi�ed. Any
modi�cations MUST be released as a new version.

Major version zero (0.y.z) is for initial development. Anything MAY change at any time. The public API SHOULD NOT
be considered stable.

Version 1.0.0 de�nes the public API. The way in which the version number is incremented after this release is
dependent on this public API and how it changes.

Patch version Z (x.y.Z | x > 0) MUST be incremented if only backwards compatible bug �xes are introduced. A bug �x
is de�ned as an internal change that �xes incorrect behavior.

Minor version Y (x.Y.z | x > 0) MUST be incremented if new, backwards compatible functionality is introduced to the
public API. It MUST be incremented if any public API functionality is marked as deprecated. It MAY be incremented if
substantial new functionality or improvements are introduced within the private code. It MAY include patch level
changes. Patch version MUST be reset to 0 when minor version is incremented.

8/13/23, 7:45 PM Appendix (A) Sematic Versioning (SEMVER) - SDEVEN Software Development & Engineering Methodology

Page 3 of 6

Major version X (X.y.z | X > 0) MUST be incremented if any backwards incompatible changes are introduced to the
public API. It MAY also include minor and patch level changes. Patch and minor version MUST be reset to 0 when
major version is incremented.

A pre-release version MAY be denoted by appending a hyphen and a series of dot separated identi�ers immediately
following the patch version. Identi�ers MUST comprise only ASCII alphanumerics and hyphens [0-9A-Za-z-].
Identi�ers MUST NOT be empty. Numeric identi�ers MUST NOT include leading zeroes. Pre-release versions have a
lower precedence than the associated normal version. A pre-release version indicates that the version is unstable
and might not satisfy the intended compatibility requirements as denoted by its associated normal version.

Examples: 1.0.0-alpha, 1.0.0-alpha.1, 1.0.0-0.3.7, 1.0.0-x.7.z.92, 1.0.0-x-y-z.–.

Build metadata MAY be denoted by appending a plus sign and a series of dot separated identi�ers immediately
following the patch or pre-release version. Identi�ers MUST comprise only ASCII alphanumerics and hyphens [0-9A-
Za-z-]. Identi�ers MUST NOT be empty. Build metadata MUST be ignored when determining version precedence.
Thus two versions that differ only in the build metadata, have the same precedence. Examples: 1.0.0-alpha+001,
1.0.0+20130313144700, 1.0.0-beta+exp.sha.5114f85, 1.0.0+21AF26D3—-117B344092BD.

Precedence

Precedence refers to how versions are compared to each other when ordered.

Precedence MUST be calculated by separating the version into major, minor, patch and pre-release identi�ers in that
order (Build metadata does not �gure into precedence).

Precedence is determined by the �rst difference when comparing each of these identi�ers from left to right as
follows: Major, minor, and patch versions are always compared numerically.

Example: 1.0.0 < 2.0.0 < 2.1.0 < 2.1.1.

When major, minor, and patch are equal, a pre-release version has lower precedence than a normal version:

Example: 1.0.0-alpha < 1.0.0.

Precedence for two pre-release versions with the same major, minor, and patch version MUST be determined by
comparing each dot separated identi�er from left to right until a difference is found as follows:

Identi�ers consisting of only digits are compared numerically.

Identi�ers with letters or hyphens are compared lexically in ASCII sort order.

Numeric identi�ers always have lower precedence than non-numeric identi�ers.

A larger set of pre-release �elds has a higher precedence than a smaller set, if all of the preceding identi�ers are
equal.

Example: 1.0.0-alpha < 1.0.0-alpha.1 < 1.0.0-alpha.beta < 1.0.0-beta < 1.0.0-beta.2 < 1.0.0-beta.11 < 1.0.0-rc.1 <
1.0.0.

8/13/23, 7:45 PM Appendix (A) Sematic Versioning (SEMVER) - SDEVEN Software Development & Engineering Methodology

Page 4 of 6

Why Use Semantic Versioning?

This is not a new or revolutionary idea. In fact, you probably do something close to this already. The problem is that
“close” isn’t good enough. Without compliance to some sort of formal speci�cation, version numbers are essentially
useless for dependency management. By giving a name and clear de�nition to the above ideas, it becomes easy to
communicate your intentions to the users of your software. Once these intentions are clear, �exible (but not too
�exible) dependency speci�cations can �nally be made.

A simple example will demonstrate how Semantic Versioning can make dependency hell a thing of the past.
Consider a library called “Firetruck.” It requires a Semantically Versioned package named “Ladder.” At the time that
Firetruck is created, Ladder is at version 3.1.0. Since Firetruck uses some functionality that was �rst introduced in
3.1.0, you can safely specify the Ladder dependency as greater than or equal to 3.1.0 but less than 4.0.0. Now,
when Ladder version 3.1.1 and 3.2.0 become available, you can release them to your package management system
and know that they will be compatible with existing dependent software.

As a responsible developer you will, of course, want to verify that any package upgrades function as advertised. The
real world is a messy place; there’s nothing we can do about that but be vigilant. What you can do is let Semantic
Versioning provide you with a sane way to release and upgrade packages without having to roll new versions of
dependent packages, saving you time and hassle.

If all of this sounds desirable, all you need to do to start using Semantic Versioning is to declare that you are doing
so and then follow the rules. Link to this website from your README so others know the rules and can bene�t from
them.

FAQ

How should I deal with revisions in the 0.y.z initial development phase?

The simplest thing to do is start your initial development release at 0.1.0 and then increment the minor version for
each subsequent release.

How do I know when to release 1.0.0?

If your software is being used in production, it should probably already be 1.0.0. If you have a stable API on which
users have come to depend, you should be 1.0.0. If you’re worrying a lot about backwards compatibility, you
should probably already be 1.0.0.

Doesn’t this discourage rapid development and fast iteration?

Major version zero is all about rapid development. If you’re changing the API every day you should either still be in
version 0.y.z or on a separate development branch working on the next major version.

If even the tiniest backwards incompatible changes to the public API require a major version bump, won’t I end up at
version 42.0.0 very rapidly?

This is a question of responsible development and foresight. Incompatible changes should not be introduced
lightly to software that has a lot of dependent code. The cost that must be incurred to upgrade can be

8/13/23, 7:45 PM Appendix (A) Sematic Versioning (SEMVER) - SDEVEN Software Development & Engineering Methodology

Page 5 of 6

signi�cant. Having to bump major versions to release incompatible changes means you’ll think through the
impact of your changes, and evaluate the cost/bene�t ratio involved.

Documenting the entire public API is too much work!

It is your responsibility as a professional developer to properly document software that is intended for use by
others. Managing software complexity is a hugely important part of keeping a project e�cient, and that’s hard to
do if nobody knows how to use your software, or what methods are safe to call. In the long run, Semantic
Versioning, and the insistence on a well de�ned public API can keep everyone and everything running smoothly.

What do I do if I accidentally release a backwards incompatible change as a minor version?

As soon as you realize that you’ve broken the Semantic Versioning spec, �x the problem and release a new minor
version that corrects the problem and restores backwards compatibility. Even under this circumstance, it is
unacceptable to modify versioned releases. If it’s appropriate, document the offending version and inform your
users of the problem so that they are aware of the offending version.

What should I do if I update my own dependencies without changing the public API?

That would be considered compatible since it does not affect the public API. Software that explicitly depends on
the same dependencies as your package should have their own dependency speci�cations and the author will
notice any con�icts. Determining whether the change is a patch level or minor level modi�cation depends on
whether you updated your dependencies in order to �x a bug or introduce new functionality. I would usually
expect additional code for the latter instance, in which case it’s obviously a minor level increment.

What if I inadvertently alter the public API in a way that is not compliant with the version number change (i.e. the
code incorrectly introduces a major breaking change in a patch release)?

Use your best judgment. If you have a huge audience that will be drastically impacted by changing the behavior
back to what the public API intended, then it may be best to perform a major version release, even though the �x
could strictly be considered a patch release. Remember, Semantic Versioning is all about conveying meaning by
how the version number changes. If these changes are important to your users, use the version number to inform
them.

How should I handle deprecating functionality?

Deprecating existing functionality is a normal part of software development and is often required to make
forward progress. When you deprecate part of your public API, you should do two things: (1) update your
documentation to let users know about the change, (2) issue a new minor release with the deprecation in place.
Before you completely remove the functionality in a new major release there should be at least one minor release
that contains the deprecation so that users can smoothly transition to the new API.

Does SemVer have a size limit on the version string?

No, but use good judgment. A 255 character version string is probably overkill, for example. Also, speci�c
systems may impose their own limits on the size of the string.

Is “v1.2.3” a semantic version?

8/13/23, 7:45 PM Appendix (A) Sematic Versioning (SEMVER) - SDEVEN Software Development & Engineering Methodology

Page 6 of 6

No, “v1.2.3” is not a semantic version. However, pre�xing a semantic version with a “v” is a common way (in
English) to indicate it is a version number. Abbreviating “version” as “v” is often seen with version control.
Example: git tag v1.2.3 -m "Release version 1.2.3", in which case “v1.2.3” is a tag name and the semantic version
is “1.2.3”.

Is there a suggested regular expression (RegEx) to check a SemVer string?

There are two. One with named groups for those systems that support them (PCRE - Perl Compatible Regular
Expressions, i.e. Perl, PHP and R, Python and Go).

See:

And one with numbered capture groups instead (so cg1 = major, cg2 = minor, cg3 = patch, cg4 = prerelease and
cg5 = buildmetadata) that is compatible with ECMA Script (JavaScript), PCRE (Perl Compatible Regular
Expressions, i.e. Perl, PHP and R), Python and Go.

See:

About

The Semantic Versioning speci�cation was originally authored by Tom Preston-Werner, inventor of Gravatar and
cofounder of GitHub.

If you’d like to leave feedback, please open an issue on GitHub.

License

Creative Commons ― CC BY 3.0

Last update: August 13, 2023

https://regex101.com/r/Ly7O1x/3/
https://regex101.com/r/vkijKf/1/

